
STAT 946 1

End-to-End LIDAR Odometry with DNN
Benjamin Skikos, Chunshang Li, Hamid Tahir

Abstract—This project modifies a deep recurrent convolutional
network architecture used for end-to-end visual odometry for
use with a LIDAR sensor instead of camera. Performance is
comparable to that obtained with end-to-end visual odometry, but
behind state-of-the-art classical LIDAR odometry on the tested
dataset.

I. INTRODUCTION

Odometry is the problem of recovering ego-motion (ex. a
car moving through its environment) given sensor data. It is
a well-studied field and state-of-the-art solutions are able to
achieve adequate results for most applications [1], [2], [3],
[4]. It is similar to the SLAM (Simultaneous localization and
mapping) problem because recovering ego-motion localizes
within an environment, but different in that odometry does
not (in general) recover a map, recognize previously visited
areas, or optimize old states given new measurements.

There are two main classical approaches to camera odome-
try: feature-based (ex [5] [6]) and direct (ex [7]). Feature-based
methods process each frame and extract unique feature points.
The feature point extraction algorithms are commonly hand-
crafted and hand-tuned. By projecting feature points image-
to-image and penalizing distance between matching features,
ego-motion can be recovered (up to a scale factor). Direct
methods re-project pixel patches between images, and penalize
the pixel-level intensity difference between the reprojected
patch and the overlapping section of the image.

LIDAR (light detection and ranging) is a time of flight
sensor that uses pairs of laser emitters and detectors to measure
distance. The Velodyne LIDAR used in this project consists
of 64 laser-detector pairs arranged in a vertical array, mounted
on a spinning sensor body such that the lasers sweep the
environment as the body rotates. The emitters are fired on a
repeating, discrete, clock cycle and each detected laser return
is processed into a 3D point in the environment. These points
are then aggregated over one full revolution to form a point
cloud (example in Figure 1). In addition to measuring distance,
these sensors also return an intensity reading, which is a
measure of how much of the laser light was reflected back
towards the sensor.

For LIDAR odometry, there are mostly two categories
of approaches: feature-based [9] & scan-registration [10].
Feature-based is largely the same as camera, whereas scan
registration is more specialized. The most common scan-
registration techniques are part of the ICP (Iterative Closest
Point) family, but there are some many others, all having the
same goal of merging two scans with overlapping sections
such that a single cohesive point cloud is formed.

The greatest challenge in applying classical techniques to
odometry is achieving robustness to both noise-driven and
systemic errors [11]. For example:

Fig. 1. Point cloud generated from a 64 beam Velodyne LIDAR [8]

• Occlusions between images/scans
• Incorrect feature correspondence
• Moving objects in the scene
• Changing lighting conditions between frames
In recent years, end-to-end visual odometry has started to be

explored [12]. The appeal of using deep networks to perform
odometry is that a deep network might learn to be robust to
error caused by difficult-to-model noise or processes, in the
same way that deep networks are able to classify difficult-to-
model objects [13].

II. RELATED WORK

In addition to [14] which this project is based on, there is
also the work in [15]. In that work, several input frames are
fed to a CNN-based architecture to perform LIDAR odometry.
However, the choice of how many input frames to use is a
hyperparameter that must be tuned, as opposed to a recurrent
network that would learn how much past information to keep.
Additionally, the authors were unable to train (or unsatisfied
with the results from) a single network to output odometry
for all of the six degrees of freedom that describe rigid body
movement. Instead, a separate CNN was trained for each of
the rotational degrees of freedom as well as a fourth CNN
for the three translational degrees of freedom. If part of
those networks are performing the same data processing, some
efficiency is lost. Furthermore, the rotation prediction was
reformulated as a classification task (classifying intervals of
rotation) and then taking a weighted average across a softmax
layer. This is limited in that the range of rotation must be
decided ahead of time, loosing flexibility.

III. NETWORK ARCHITECTURE

The network architecture is quite similar to [14] with
some simplifications in order to reduce the GPU memory
requirements and training time. The input to the network is



STAT 946 2

Fig. 2. LIDAR network architecture

a pair of sequential images stacked along the channel axis.
The output is the 6DoF displacement between images.

A. Network Input

Comparing LIDAR to cameras, there are some important
differences:

1) The points are collected continuously, so each aggre-
gated point cloud has significant motion distortion due
to ego-motion.

2) LIDAR rotation rate fluctuates a small amount, and some
of the laser firings do not have a return, so the number
of points varies between scans

3) The time of rotation is not an integer number of firing
cycles, so the absolute azimuth angles sampled by
LIDAR vary scan-to-scan

4) Since LIDAR is actively lighting the sampled surfaces
with a laser, the intensity return is dependent on the
angle of incidence and specularity of the surface.

As the network chosen for this project is designed to work
with images, a scheme is required to convert LIDAR point
clouds into images. The approach is based on [15]: The points
in each point cloud are binned according their azimuth, and the
mean from each bin is taken to populate the converted image.
Empty bins are populated by linearly interpolating between
populated bins. The final image has a width of 1152 azimuth
bins and a height of 64 (each laser samples at a constant
elevation). The width was chosen as a compromise between
limiting the number of points in each bin (binning blurs the
image) and to limit input image size to the network.

With this technique, each LIDAR point cloud is converted
into a 2-channel image. The first channel is range, the second
is intensity. The input to the network is a pair of sequential
images stacked along the channel axis. An overview of the
entire architecture is shown in Figure 2.

TABLE I
CNN CONFIGURATION

Layer Kernel Size Stride Channels
Conv1 7 × 1 1 × 1 64
Conv2 5 × 1 2 × 1 128
Conv3 5 × 3 2 × 2 240
Conv4 3 × 3 2 × 2 450
Conv5 3 × 3 2 × 2 450
Conv6 3 × 3 2 × 1 600

B. Convolutional Layer

The role of this part of the network is to learn features
from the pair of stacked images from which ego-motion can
be inferred. This portion of the network in [14] is the front half
of FlowNet [16] because FlowNet extracts optical flow, and
it is possible to estimate ego-motion from optical flow [17].
For this project, the CNN layer was simplified by shortening it
and reducing the channel size throughout. The kernel sizes and
strides were also modified because LIDAR images are much
wider than they are tall. This is because the sensor samples
its environment much more densely in azimuth than elevation.
For this reason, in the early CNN layers the kernels are also
wide, in an attempt to summarize the denser information along
azimuth before applying square kernels. A summary of CNN
layers’ configurations is shown in Table I. Dropout is applied
in the last couple of layers to add regularization [18]. Relu
activations are applied after each convolutional layer.

C. Recurrent Layer

The recurrent layer in this project is a single LSTM cell.
An RNN is used to try to capture the dynamics of the ego-
motion [14]. An LSTM is used because it avoids the problems
of exploding/vanishing gradient [19]. The paper this project is
inspired by used 2 LSTM cells with more channels, but a
network that size is not practical to train on a single NVIDIA
TITAN Xp GPU, so it was simplified for the purposes of the
project.

D. Fully Connected Layer

There are two fully connected layers that convert the output
of the RNN directly into the relative frame-to-frame displace-
ment. The displacements are taken to be meters and the relative
rotation is parameterized with moving-axis-zyx Euler angles
in radians.

E. SE3 Composition Layer

This part of the network is a single layer that takes the
relative displacements from the previous section and composes
them with the previous pose. The previous pose is represented
as a 3D position and a quaternion to represent orientations.
This composition layer is present in order to penalize cumu-
lative errors from the ground truth instead of just frame-to-
frame. In addition, composing poses over multiple time steps
minimizes the effect of noise in GPS ground truth. This layer
does not contain any trainable parameters.



STAT 946 3

IV. TRAINING

A. Cost Function

The cost function is comprised of two separate but related
terms weighted by α, where alpha controls the relative con-
tribution of each of term.

L = αL1 + (1− α)L2

1) Frame-to-Frame Loss: This cost penalizes the frame-to-
frame output before it passes through the SE3 composition
layer. It is the same as the one in [14], except the term for
uncertainty was removed. The cost function with uncertainty
requires a regularization term to avoid a singularity when
the network is outputting zero uncertainty. Since uncertainty
estimation was not a goal of the project, that component was
removed to simplify the problem. Therefore the cost function
used was

L1 =
1

t

t∑
k=1

‖p̂k − pk‖22 + κφ ‖φ̂k − φk‖
2

2

Note that subtracting two orientations parameterized by
Euler angles from each other is only a good approximation
of distance between orientations when those orientations are
close. In practice, the network output quickly converges to be
close enough.

2) SE3 Composition Loss: This cost penalizes the dif-
ference between the networks output after the composition
layer and the ground truth. The cost based on [14], except
for the quaternion distance. Directly subtracting quaternions
is problematic because every rotation can be represented by
two quaternions. Instead, subtraction was replaced with cosine
distance.

L2 =
1

t

t∑
k=1

‖p̂k − pk‖22 + κq(1− 〈q̂k, qk〉2)

B. State Propagation

During training the state of the network is propagated to the
temporally-subsequent batch when it is processed. In [14] the
authors picked random start and end points within the training
sequences to generate a set of sequences, then shuffled those
sequences during training. A different strategy was used for
the project because random subsequences share some images,
resulting in some images being overrepresented within in each
epoch.

For this project, one epoch was run with the batches
being temporally-ordered. Subsequent epochs randomize batch
order, using state initialization from the temporally-previous
batch.

C. Data Augmentation

Any augmentation techniques that invalidate the ground
truth trajectory can not be used (ex. rotation). In the project,
the images were mirrored horizontally and in time for data
augmentation. Mirroring horizontally is necessary because
LIDAR continuously samples its environment, and the order

Fig. 3. SE(3) Loss plotted over epoch

of that sampling is encoded in column index in the LIDAR
image.

D. Training

RNNs are notorious for being difficult to train, and this
architecture follows suit in that respect. The authors of [14]
used initial weights for the CNN portion from flownet to aid
convergence. Since CNN for LIDAR is different, that was not
possible. Instead, it was empirically found that immediately
attempting to use backpropagation through time was unlikely
to result in convergence. Instead, the network was first trained
of pairs of frames. Once that converged (training loss plotted
in Figure 3), the weights were used to initialize the network
to fine-tune over longer time sequences.

V. EVALUATION

A. Dataset

The project was evaluated using the popular KITTI odom-
etry dataset [20]. The dataset was collected from car-mounted
sensors (LIDAR and camera). It consists of several drives in
Germany, with ground truth provided by a GPS-INS system.
11 sequences are provided with ground truth for development.
Sequences 0, 1, 2, 8, & 9 were used for training, sequence 7
for validation, and sequences 3, 4, 5, 6, & 10 for testing. A
sample trajectory result on one of the test sequences in shown
in Figure 4.

VI. DISCUSSION

As can be seen from Table II, the results are comparable
with the results presented in [14]. Classical odometry tech-
niques incorporating LIDAR tend to outperform camera-only
[20] so the intuitive result is that end-to-end LIDAR would
outperform end-to-end camera. Results for rotation follow this
intuition but results for translation do not. Speculating, this
may be because the LIDAR image has a 360 degree field
of view, containing two vanishing points where the apparent
optical flow when moving forward is zero. In contrast, a



STAT 946 4

Fig. 4. Trajectory obtained on KITTI sequence 5 (subset of test set)

Fig. 5. Test error vs various path length. For a given path length, the error
is averaged over path lengths form 100m to 800m from all test sequences

Fig. 6. Test error vs various trajectory speeds. The error is averaged over
all subsequences of a given speed

TABLE II
RESULTS ON TESTING SEQUENCES

Seq. Ours ESP-VO
trel(%) rrel(◦/100m) trel(%) rrel(◦/100m)

03 11.69 3.95 6.72 6.46
04 9.77 4.96 6.33 6.08
05 6.01 2.62 3.35 4.93
06 11.70 3.85 7.24 7.29
07 4.40 2.25 3.52 5.02
10 8.82 3.65 9.77 10.2

mean 8.73 3.54 6.15 6.66
• trel: average translational error on trajectories of length 100-800m
• rrel: average rotational error on trajectories of length 100-800m

camera image contains just one vanishing point. Also, it is
possible the various non-linearities throughout the network are
not taking full advantage of the high-quality range information
present in LIDAR images. Lastly, this project’s network is
smaller than that in [14], having reduced expressive capacity.

Figures 5 & 6 show how the error changes with path length
and vehicle speed. For speed, it is not surprising that the error
is relatively high when the speed is slow, because most turns
happen at low speed, and turning is under-represented in the
training data relative to mostly straight travel.

In this project, a simplified network (from [14]) was trained
in order to check reproducibility. Later, it was noticed that the
LIDAR version generalized more readily on test data, requiring
less fiddling with hyper-parameters. This is an intuitive result
given that LIDAR actively illuminates its scene, so does not
suffer from changing lighting conditions or shadows.

It was discovered late in the project that the LIDAR data
included in the KITTI odometry dataset has been corrected for
ego-motion. Consequently, the horizontal mirroring was not
required when using temporal mirroring for data augmentation.
Even so, better performance was observed using this technique
possibly because it ensures that there is an average forward
velocity of zero in the training set, avoiding the network
learning a bias.

The KITTI dataset is relatively small and does not contain
adverse environmental conditions (such as snow or rain).
Therefore, the ability of a deep network to learn to cope with
adverse environmental conditions was not evaluated. A good
dataset to explore this property is the Ford Campus dataset
[21], which includes snowy scenes.

The planar convolutions in this network are not invariant
to translation due to the 360 degree field of view. Spherical
convolution has this property [22] and so might be useful in
this application.

VII. CONCLUSION

This project demonstrates that end-to-end methods applied
to visual odometry can also be applied to LIDAR odometry.
The accuracy achieved in this project is comparable to that in
[14], despite the network being smaller. However, the large
gap in performance between classical visual odometry and
classical LIDAR odometry was not reproduced, so further
improvement is likely possible. There remain additional av-
enues to improve performance beyond tweaking the existing
architecture.



STAT 946 5

REFERENCES

[1] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE
Robotics Automation Magazine, vol. 18, pp. 80–92, Dec 2011.

[2] F. Fraundorfer and D. Scaramuzza, “Visual odometry : Part ii: Matching,
robustness, optimization, and applications,” IEEE Robotics Automation
Magazine, vol. 19, pp. 78–90, June 2012.

[3] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time,” in Robotics: Science and Systems Conference, July 2014.

[4] J. Zhang and S. Singh, “Visual-lidar odometry and mapping: low-drift,
robust, and fast,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA), pp. 2174–2181, May 2015.

[5] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman
filter for vision-aided inertial navigation,” vol. 22, pp. 3565 – 3572, 05
2007.

[6] C. Forster, M. Pizzoli, and D. Scaramuzza, “Svo: Fast semi-direct
monocular visual odometry,” 05 2014.

[7] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Mar. 2018.

[8] HDL-64E. Velodyne LiDAR.
[9] T. Y. Tang, D. J. Yoon, F. Pomerleau, and T. D. Barfoot, “Learning a bias

correction for lidar-only motion estimation,” CoRR, vol. abs/1801.04678,
2018.

[10] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algorithm,”
pp. 145–152, 02 2001.

[11] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza,
J. Neira, I. D. Reid, and J. J. Leonard, “Simultaneous localization
and mapping: Present, future, and the robust-perception age,” CoRR,
vol. abs/1606.05830, 2016.

[12] S. Wang, R. Clark, H. Wen, and N. Trigoni, “Deepvo: Towards end-to-
end visual odometry with deep recurrent convolutional neural networks,”
CoRR, vol. abs/1709.08429, 2017.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” CoRR,
vol. abs/1502.01852, 2015.

[14] S. Wang, R. Clark, H. Wen, and N. Trigoni, “End-to-end, sequence-
to-sequence probabilistic visual odometry through deep neural net-
works,” The International Journal of Robotics Research, vol. 0, no. 0,
p. 0278364917734298, 0.

[15] M. Velas, M. Spanel, M. Hradis, and A. Herout, “CNN for IMU assisted
odometry estimation using velodyne lidar,” CoRR, vol. abs/1712.06352,
2017.

[16] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazirbas, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical
flow with convolutional networks,” CoRR, vol. abs/1504.06852, 2015.

[17] G. Adiv, “Determining three-dimensional motion and structure from
optical flow generated by several moving objects,” vol. PAMI-7, pp. 384
– 401, 08 1985.

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from overfit-
ting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958,
2014.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, pp. 1735–1780, Nov. 1997.

[20] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[21] G. Pandey, J. R. Mcbride, and R. M. Eustice, “Ford campus vision and
lidar data set,” Int. J. Rob. Res., vol. 30, pp. 1543–1552, Nov. 2011.

[22] T. S. Cohen, M. Geiger, J. Köhler, and M. Welling, “Spherical cnns,”
CoRR, vol. abs/1801.10130, 2018.


