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Abstract—The usage of Unmanned Aerial Vehicles (UAVs) is
increasing dramatically, manifested through applications such as
inspection, monitoring, mapping, and safety surveillance. Being
able to localize the UAV itself while gather information about the
environment is crucial for many of these applications. In the past,
research has shown that odometry for UAVs can be accomplished
with vision systems. However, if there are not enough features
in the environment or if the motion of the UAV is aggressive,
an odometry system that purely relies on vision often does not
work well. To fix this issue, combining inertial measurements
with visual measurements has been a common approach. This
report presents the process of investigating and implementing the
current state-of-the-art visual inertial odometry. A naive frame
to frame visual odometry is studied and modified into a visual
inertial odometry using bundle adjustment.

Index Terms—Localization; Aerial Systems: Perception and
Autonomy;

I. INTRODUCTION

In recent years, Unmanned Aerial Vehicles (UAVs) have
become a key research area for military and civilian applica-
tions. Localization is essential for many of these applications,
such as mapping and package delivery. In certain scenarios, a
global positioning system (GPS) may not be either available or
reliable enough. As a result, in order for a UAV to navigate in
an uncontrolled environment more robustly, visual odometry
or SLAM is often adopted to provide the estimated states.
Combining both visual and inertial measurements has been a
common and popular means for addressing localization tasks
such as visual odometry and SLAM [1]. Vision measurements
in images and inertial measurements given by gyroscopes and
accelerometers have been proven to perform well in GPS-
denied environments to provide estimations of an autonomous
robot and environment [1].

Visual-inertial pose estimation problem can be performed
using an filter-based approach or a optimization-based. Re-
garding the filter-based method, the current state-of-the-art al-
gorithm is S-MSCKF [2]. They estimate the state of the micro
aerial vehicle using Multi-State Constraint Kalman Filter. This
method takes advantage of the inertial measurements from
IMU. To solve the IMU synchronization issue, they employ
a 4th order Runge-Kutta numerical integration to propagate
the estimated IMU state. The authors demonstrate that their

algorithm provides better robustness while requiring similar
computational power compared with the current state-of-art
monocular solutions. They also declare their work is the first
open-source filter-based stereo VIO that does not require GPU
acceleration to run on a common laptop. In terms of the
optimization-based method, the first do to so successfully was
Open Keyframe-based Visual-Inertial SLAM (OKVIS) [8].
OKVIS formulated visual and inertial measurements into a
single optimization problem, and demonstrated superior results
than a vision only method. However, their formulation requires
to redo IMU integration with every single step of the optimiza-
tion, which is not computationally efficient. This is solved by
using IMU pre-integration, which is thoroughly discussed in
[6]. IMU pre-integration formulates IMU integration in a way
such that the integral only need to be calculated once, thus
increasing computational efficiency. Qin et al. [3] proposed a
monocular tightly-coupled visual inertial full SLAM system,
which is called VINS-Mono. It uses a single camera and a low-
cost IMU to provide a robust and versatile state estimation.
The major components of VINS-Mono include initialization,
camera and IMU measurements processing, relocalization,
and global pose optimization. In the initialization step, they
propose a loosely-coupled sensor fusion method, which aligns
metric IMU pre-integration with the visual-only Structure from
Motion (SfM) results, to recover the scale. In the vision front
end, all the features are tracked using KLT sparse optical flow
algorithm and use keyframes to reduce the computational cost.
This paper uses IMU pre-integration formula from [6]. The
challenge of integrating IMU is that IMU has a higher rate
than cameras and thus it is impossible to estimate the state of
the camera at all the IMU states. One solution to this problem
is to perform IMU pre-integration. They extend the IMU pre-
integration by incorporating IMU bias correction in this paper.
IMU state propagation requires rotation, position, and velocity
of the body frame, and when the pose is adjusted the IMU
measurements need to be re-propagated, which is computa-
tional demanding. The IMU pre-integration technique reduces
the times of performing re-propagation and thus reduces the
computational cost. A sliding window and marginalization
scheme are also used to reduce the computational cost.

The objective of this project is to investigate and imple-
ment the current state-of-the-art IMU integration method. We



adopted the IMU formulation from VINS-MONO. Due to the
time limit, we choose to modify an existing SLAM algorithm
which is Pro-SLAM [4]. It is is a stereo visual SLAM
system that is based on a frame to frame optimization. We
firstly modify the frame to frame optimization to be a bundle
adjustment, and afterwards IMU measurement constraints are
added to the pose graph. The entire project is coded in C++
and the optimization is implemented using g2o library. We
select to use EuRoc dataset to evaluate our algorithm, and it
is determined that by adding bundle adjustment and inertial
measurements, the error of the odometry can be reduced.

In the remainder of this report, we cover the measurement
pre-processing in II and the back-end optimization in III. In IV,
we compare results obtained with our visual inertial odometry
with the original Pro-SLAM. Finally, we summarize this report
and the project and suggest potential future work.

II. MEASUREMENT PREPROCESSING

This section presents the preprocessing steps for both visual
and inertial measurements. For visual measurements, we adopt
the algorithm from Pro-SLAM. For inertial measurements, we
follow the same IMU pre-integration approach as [3]. We use
the notation introduced in Barfoot et al [5], Cvki is the rotation
of inertial frame i with respect to vehicle frame at time k vk,
pvkii is position of frame vk with respect to frame i expressed
in frame i. (̂·) is used to denote noisy or estimated quantities.

A. Vision Processing

For vision measurements, a standard pinhole camera model
is assumed for all projection related operations. For each pair
of images, ORB descriptor is used to detect and extract the
features. In the next step, a regularization unit is applied to
ensure that all the keypoints are evenly distributed in the left
image [4]. The regularization unit divides all the keypoints
into bins arranged as a fine grid on the image. For each bin,
only the ”best” feature is kept while all the other keypoints
are discarded. Since it is assumed that all the input pictures
are undistorted and rectified, the stereo keypoint pairs can be
determined by searching only on the epipolar line, and the
best match is found by the Hamming distance between the
descriptors. Afterwards, triangulation is performed to find the
depth and the 3D position of the landmarks, and the landmark
correspondences are determined by projecting the landmark in
the previous frame into the current left camera frame.

Given the 3D position and correspondences of the land-
marks, we can derive the camera projection measurement
model. Firstly, the 3D landmark position is projected into the
camera frame as follows:

ppjckck
=

xy
z

 = Ccv(CTivk(ppjii − rvkii )− rcvv ) (1)

where
{

rvkii ,Cvki
}

is the transform from world frame to IMU

frame and
{

rcvv ,Ccv
}

is the transform from IMU frame to

camera frame. ppjii is the landmark position in world frame.

Then the landmark position is projected from the camera frame
to the image coordinate plane as follow.ulvl

ur

 = π(ppjckck
) =

1

z

 fux
fvy

fu(x− b)

+

cucv
cu

 (2)

where ul, vl are the left image coordinates, ur is the x
coordinate in the right image, cu, cv are the principle points
and b is the baseline.

B. IMU Pre-integration

We adopted the same IMU pre-integration scheme as [3]
which is also similar to [6]. The difference is that [3] chose
to represent orientation in quaternions which leads to slightly
different formulations. Quaternions are ideal for rotation rep-
resentation not only because they are more compact, it is
also much easier to correct for numerical problems through a
simple re-normalization. In contrast, a rotation matrix requires
re-orthogonalization to correct for numerical errors, which is
a more involved process. To derive the equations for pre-
integration, we start with the IMU measurement model. Note
that in this model, we neglect the rotation of the earth since
it is assumed the applications uses low-grade IMU that is
unable to measure the small difference. âvkivk

and ω̂vkivk
are

the accelerometer and gyroscope measurements returned from
the sensor, bat and bωt are the biases, and na and nω are the
sensor noise.

âvkivk
= avkivk

+ bat + Cvkigi + na (3)

ω̂vkivk
= ωvkivk

+ bωt + nω (4)

The accelerometer and gyroscope additive noise and the bias
random walk are modelled as zero mean Gaussian.

na ∼ N (0,σ2
a),nω ∼ N (0,σ2

ω) (5)

ḃat = nba , ḃωt
= nbω (6)

nba ∼ N (0,σ2
ba

),nbω ∼ N (0,σ2
bω

) (7)

The IMU measurements between two images at frames vk
and vk+1 are integrated to obtain the change in position,
velocity, and orientation. ∆t = tk+1 − tk is the elapsed time
between two image frames. Rearranging (3), integrating it once
to get velocity and again to obtain the position. Similarly for
the gyroscope, (4) is rearranged and integrated once for change
in orientation. Note the operator ⊗ multiples two quaternions.

p
vk+1i
i = pvkii + vvkii ∆tk+∫∫ tk+1

tk

(Cit(â
vki
vk
− bat − na)− gi)dt

2 (8)

v
vk+1i
i = vvkii +

∫ tk+1

tk

(Cit(â
vki
vk
− bat − na)− gi)dt (9)

qivk+1
= qivk⊗∫ tk+1

tk

1

2
qvkt ⊗

[
0

ω̂vkivk
− bωt

− nω

]
dt (10)

Using (8), (9) and (10) directly in optimization is not ideal.
Within each integral is Cit which is global rotation, it contains



the quantity Civk which is the state we will be optimizing for.
With every iteration of the optimizer, Civk will change, this
will force us to recompute all the integrals at every step of the
optimization which will be very computationally expensive.
To get around this, (8), (9) and (10) are rearranged such that
the integrals only has terms with respect to frame vk. The
pre-integration terms are denoted as αvkvk+1

, βvkvk+1
, and

γvkvk+1
.

p
vk+1i
i = (pvkii + vvkii ∆tk −

1

2
gi∆t

2
k)+

Civk

∫∫ tk+1

tk

Cvkt(â
vki
vk
− bat − na)dt2︸ ︷︷ ︸

αvkvk+1

(11)

v
vk+1i
i = (vvkii − gi∆tk)+

Civk

∫ tk+1

tk

Cvkt(â
vki
vk
− bat − na)dt︸ ︷︷ ︸

βvkvk+1

(12)

qivk+1
= qivk⊗∫ tk+1

tk

1

2
qvkt ⊗

[
0

ω̂vkivk
− bωt − nω

]
dt︸ ︷︷ ︸

γvkvk+1

(13)

zvkvk+1
=

αvkvk+1

βvkvk+1

γvkvk+1

 (14)

Even with the Civk outside of the integral, the bias terms
bat and bwt at time tk are also states we will be optimizing
for, which will change at each iteration of optimization. To
deal with the change in biases without recomputing the pre-
integrals, a first-order approximation is used. This approxima-
tion is valid since the biases, by nature, are slowly changing
quantities, optimization will change biases by a tiny amount.
This approximation will be presented later.

The IMU pre-integration values are perturbed by noise.
The perturbations are defined as follows. The pre-integration
position αvkt, velocity βvkt, and biases bat and bωt are in
the Euclidean space, thus the perturbation is simply added to
the nominal value. Orientation is an element of the SO(3)
group, the perturbation is applied through a small angle
approximation of the quaternion.

αvkt = α̂vkt + δαvkt (15)

βvkt = β̂vkt + δβvkt (16)

γvkt = γ̂vkt ⊗
[

1
1
2δθvkt

]
(17)

bat = b̂at + δbat (18)

bωt = b̂ωt + δbωt (19)

The perturbation and nominal kinematics are separated [7]
and the continuous time perturbation kinematics is shown in

(20). 
δα̇vkt
δβ̇vkt
δγ̇vkt
δḃat
δḃωt

 = Ft


δαvkt
δβvkt
δγvkt
δbat
δbωt

+ Gt


na
nω
nba
nbω

 (20)

Where Ft and Gt are the state matrix and the noise matrix,
they shown in (21) and (22).

Ft =


0 I 0 0 0
0 0 −Cvkt(â

ti
t − bak)× −Cvkt 0

0 0 −(ω̂tit − ωak)× 0 −I
0 0 0 0 0
0 0 0 0 0

 (21)

Gt =


0 0 0 0

−Cvkt 0 0 0
0 −I 0 0
0 0 I 0
0 0 0 I

 (22)

The continuous time model is integrated to obtain the state
transition matrix Φ, and Φ is used to propagate the IMU
uncertainties for a given IMU time step δt.

Φt = Φ(t, t+ δt) = exp(

∫ t+δt

t

F(τ)dτ) (23)

Qt =

∫ t+δt

t

Φ(t, τ)GQGΦ(t, τ)dτ (24)

Q =


σ2
a 0 0 0

0 σ2
ω 0 0

0 0 σ2
ba

0
0 0 0 σ2

bω

 (25)

Equation (26) is used to propagate covariance from t to t+
δt. Starting at tk with Pvkvk = 0, the covariance is propagated
for each IMU measurement between tk and tk+1 to obtain
Pvkvk+1

. Pvkvk+1
will be used in the optimization.

Pvk t+δt = ΦtPvktΦ
T
t + Qt (26)

Equation (27) is used to find the Jacobian of zvkvk+1
with

respect to zvkvk . Start with Jvkvk = I, it is multiplied with
Φ recursively between tk and tk+1 to approximate Jvkvk+1

=
∂δzvkvk+1

∂δzvkvk
.

Jt+δt = ΦtJt (27)

Using the sub-blocks of Jvkvk+1
: Jαba , Jαbω , Jβba , Jβbω , Jγbω

as shown in (28), the actual pre-integration values αvkvk+1
,

βvkvk+1
, and γvkvk+1

can be updated using (29). The mapping
expq : R3 7→ S3 maps an axis angle vector to a quaternion
in 3-Sphere. This differs from the [3] as it uses the small
angle quaternion approximation shown in (17). Instead of
using approximations, an exact mapping is used here as there
is not much increase computational cost in practice. The expq
mapping is defined in (30), where φ is the magnitude of the



rotation and u is the unit vector indicating the direction of
rotation.

Jvkvk+1
=


Jαba Jαbω

· · ·9×9 Jβba Jβbω
· · ·3×3 Jγbω

· · ·3×9 · · ·3×3 · · ·3×3

 (28)

αvkvk+1
= α̂vkt + Jαbaδbat + Jαbωδbωt

βvkvk+1
= β̂vkt + Jβbaδbat + Jβbωδbωt (29)

γvkvk+1
= γ̂vkt ⊗ expq(J

γ
bω
δbωt)

q =


w
x
y
z

 = expq(φu) =

[
cosφ

u sinφ

]
(30)

Finally, it is difficult to obtain the exact solution for the
integrals from (8), (9), (10), (23), and (24), thus the discretiza-
tion must be computed numerically. Many methods such as
Euler’s, mid-point integration, and Runge-Kutta are available
to integrate numerically. The Euler’s method is chosen here for
simplicity. One of the more common method used is Runge-
Kutta 4th order.

For computing the IMU pre-integration values numeri-
cally, it start with α̂vkvk = 0, β̂vkvk = 0 and γ̂vkvk =[
1 0 0 0

]T
, and iteratively update the pre-integration with

each IMU measurement.

α̂vk t+δt ≈ α̂vkt + β̂vktδt+
1

2
C{γ̂vkt}(âtit − bak)δt2 (31)

β̂vk t+δt ≈ β̂vkt + C{γ̂vkt}(âtit − bak)δt (32)

γ̂vk t+δt ≈ γ̂vkt ⊗ expq(ω̂
ti
t − bωk

) (33)

Assuming constant values for Ft and Gt during the period
of integration, Φ is approximated by taking the first two
terms of the matrix exponential. Qt is approximated using
the identity Φ(t, t) = I.

Φt ≈ exp(

∫ t+δt

t

F(t)dτ) ≈ I + Ftδt (34)

Qt ≈
∫ t+δt

t

Φ(t, t)GQGΦ(t, t)dτ ≈ GQGδt (35)

Later, the pre-integrations will be used as measurements
during optimization.

III. INITIALIZATION

For initialization, we assume that the vehicle is stationary
for a period of time as in [2], which simplifies the initialization
problem. Since the scale is directly observable from a stereo
camera, it does not need to be recovered in the initialization
stage. We follow [3] and ignore accelerometer bias terms in the
initial step, because the accelerometer bias is coupled with the
gravity vector, and due to the large magnitude of the gravity
vector, the accelerometer bias is difficult to determine [3]

Regarding the gyroscope bias, because the vehicle is as-
sumed to be stationary, the bias can be calculated by simply

Fig. 1. Visual Inertial Bundle Adjustment

taking the average of all the gyroscope data during initializa-
tion as follows for N number of IMU measurements when the
vehicle is stationary.

bw0
=

1

N

N∑
k=1

ωvkivk
(36)

The initial gravity vector g is also determined by taking the
average of the accelerometer reading during initialization.

g0 =
1

N

N∑
k=1

âvkivk
(37)

After obtaining the initial gravity vector, we determine the
rotation Civ0 between the inertial frame and the current
vehicle frame v0 by rotating the gravity to the z-axis [3].

IV. BACK-END OPTIMIZATION

After completing the initialization step, we perform a sliding
window-based tightly-coupled Stereo Visual Inertial Odometry
Optimization to solve the camera pose in the world frame.

A. Formulation

We follow the state formulation from [3] except for each
landmark the states are the x, y, and z coordinates in the world
frame rather than the inverse depth formulation used in [3].

vehicle state : xk = [pvkii ,vvkii ,qvkii ,bak ,bωk
] (38)

full state : χ = [x0,x1, . . . ,xm,︸ ︷︷ ︸
vehicle

pp1ii ,pp2ii , . . . ,ppnii︸ ︷︷ ︸
landmark

]

(39)

where xk is the IMU state at the time k, which includes
translation, velocity, and orientation of the IMU in the world
frame, and acceleration and gyroscope bias. n represents the
number of frames in the sliding window, and m is the total
number of landmarks in the sliding window.

We form this problem into a visual inertial bundle adjust-
ment as shown in Figure 1. At each frame, the IMU pose
and the camera pose is connected by calibration. The visual
measurements provide constraints between the camera poses
and the landmarks. The IMU measurements connect IMU
poses from frame to frame.



Fig. 2. Factor graph

The graph in Figure 1 can be represented using a factor
graph which is shown in Figure 2. The factor graph has two
types of variables, which are THE pose of the IMU and the
3D position of the landmarks. There are also two factors
which are the IMU measurement constraints and the visual
measurements constraints. The objective of the factor graph
is to minimize the sum of all measurement residuals which
include IMU measurement residuals and visual measurement
residuals obtain a maximum posterior estimation:

min
χ

{∑
k

ρ(es,kQk
−1eTs,k)+

∑
j,k

ρ(el,jkR
−1
jk eTl,jk)

}
(40)

where the Huber norm is defined as follows. A robust loss
function is used to minimize the effects of outliers.

ρ(s) =

{
1 s ≥ a
2
√
s− 1 s < a

(41)

es,k, and el,jk are the residuals for IMU measurements
and visual measurements respectively, and they are defined
in section IV-B and section IV-C. The entire factor graph
optimization is implemented in C++ using g2o library.

B. IMU Measurement Residual

The IMU residuals are obtained by rearranging (11), (12),
and (13). Here we used rotation matrix representation to make
Jacobian derivation easier. For rotation, the optimization is
performed on the perturbation on SO(3), use quaternion or
rotation matrix to derive the Jacobian will lead to the same
result under the same assumptions. In the Jacobian derivation
of [3], it uses small quaternion approximations as well as the
assumption that the error is small. We adopted the Jacobian
derivation of [6], which is formulated using rotation matrices
and it does not make the small error assumption. The increase
in computational cost should be minimal and more accurate
Jacobian will lead to better convergence.

es,k(ẑvkvk+1
,xk,xk+1) =

Cvki(p
vk+1i
i − pvkii − vvkii ∆tk + 1

2gi∆t
2
k)− α̂vkvk+1

Cvki(v
vk+1i
i − vvkii + gi∆tk)− β̂vkvk+1

ln(CT {γ̂vkvk+1
}RT

ivk
Rivk+1

)∨

bak+1
− bak

bωk+1
− bωk


(42)

Fig. 3. UAV Configuration

C. Visual Measurement Residual

A traditional pinhole camera model is assumed, which
defines the reprojection errors on a generalized image plane.
The visual residuals are shown as follow:

el,jk(ẑckl,xk,p
pji
i ) = y

pj
k −π(Ccv(C

T
ivk

(ppjii −rvkii )−ρcvv ))
(43)

where y
pj
k is the observation of the pj landmark in the kth

image, which includes the x and y coordinate of the left image
and x coordinate of the right image. π is the camera projection
model which projects the landmark from the camera frame to
the image plane.

D. Sliding Window without Marginalization

In order to reduce the computational complexity of the
optimization, we apply a sliding window approach. However,
we do not perform a proper marginalization to propagate the
information from the marginalized out pose. Whenever a new
pose is added, the oldest pose will be discarded. We keep a
window size to be 25.

V. EXPERIMENTAL RESULTS

We performed our experiments on the well-known EuRoC
dataset. The EuRoC dataset is collected on a quadrotor indoors
equipped with a Visual Inertial Sensor [9], the UAV platform
is shown in Figure 3. The Visual Inertial Sensor module
provides hardware synchronization between the two cameras
and the IMU, this ensures all measurements are collected
at the same instance in time. The stereo cameras images
arrive at 20Hz, and the IMU measurements arrive at 200Hz.
Due to the IMU measurements arriving at a much higher
rate than stereo images, IMU pre-integration is critical to be
computationally efficient. Ground truth is also provided, it is
either collected by a VICON or Leica system depending on
the sequence. However, the ground truth provided is not in
the same frame as the estimation. Thus, we need to align the
estimated poses with the ground truth, this is done in the same
fashion as [4]. The EuRoC dataset is challenging due to rapid
motions and illumination changes throughout the sequences.
To demonstrate the effect of combining vision with IMU, we
compared our results to ProSLAM which are vision only. The
results are summarized in table I.



TABLE I
EXPERIMENTAL RESULTS RMS ERRORS

Sequences ProSLAM Ours

MH 01 easy 0.07986 0.07247
MH 02 easy 0.06326 0.06125
MH 03 medium 0.4279 0.3434
V1 01 easy 0.1202 0.1018
V1 02 medium 0.2333 0.1798

Fig. 4. Sample frame from MH 01 easy

There are a total of 10 sequences available in EuRoC,
we weren’t able to finish the unlisted sequences. ProSLAM,
with loop closing disabled, uses only relative transformation
between to images, and compound these relative transforms to
estimate the trajectory. The front-end of ProSLAM is designed
for this relative transformation estimation. It extracts as many
features as possible between two frames, and coarsely match
the features without performing outlier rejection with methods
such as RANSAC. As a result, the features matched over
a few frames are not stable, there are many mismatches
and outliers. Although this front-end has proven to work
well for ProSLAM, our experience suggests visual inertial
fusion needs high-quality stable features over multiple frames.
ProSLAM’s front-end was not robust enough for the more
difficult sequences.

For the EuRoC sequence we were able to successfully
finish, there is a slight improvement with the easy sequence
such as MH 01 easy, MH 02 easy, and V1 01 easy. In these
sequences, the quadrotor was moving at a slow to moderate
velocity, and the scenes do not have too much illumination
change. The Machine Hall (MH) sequences are particularly
feature-rich. A sample from MH 01 easy is shown in Figure
4. This shows in environments with good texture and illumina-
tion without rapid motion, visual inertial fusion does not offer
much of an advantage. The trajectory plots for MH 01 easy
shown in Figure 5. It is clear that the estimated trajectory
follows the groundtruth very well.

The more difficult trajectories such as MH 03 medium
and V1 02 medium, our result is significantly better. The
quadrotor in these sequences moved much more aggressively
in comparison to the easy sequences. Rapid motion creates
would create less accurate feature matches due to motion
blur. Figure 6 shows a frame from V1 02 medium without

Fig. 5. MH 01 easy trajectories comparison

Fig. 6. Sample frame from V1 02 medium

good features and has a good amount of motion blur. The
addition IMU motion constraint proved valuable, as inaccurate
matches have less of an effect on the estimate obtained from
optimization. This is apparent when looking at trajectory plots
of V1 02 medium shown in Figure 8 and 7. In Figure 7,
the ProSLAM trajectory is not smooth due to the inaccurate
feature matching. Comparing this to Figure 8, where we can
see the trajectory is much more smooth. This suggests visual
inertial fusion increases accuracy in situations with rapid
motion and degraded feature matching accuracy. We also spent
minimal effort tuning the IMU parameters, the results could
be better with additional parameter tuning.

VI. CONCLUSION AND FUTURE WORK

In this report, we present a visual inertial odometry that is
based on [4] and follows [3] IMU pre-integration method. We
evaluate our algorithm in EuRoc dataset and demonstrate that
our approach outperforms the original ProSLAM, especially
when the features in the images are not rich or the motion of
the UAV is aggressive.

There are a number of possible improvements that can be
implemented in the future. We could add keyframe selection to
further reduce the computational complexity of the optimiza-
tion. For the sliding window, a proper marginalization can



Fig. 7. V1 02 Medium ProSLAM result compared to groundtruth

Fig. 8. V1 02 Medium our result compared to groundtruth

be applied to propagate the information from the discarded
poses and features. A loop closure module can be added
to detect whether the UAV has visited the same location
before and further reduce the drift of the poses over time. In
addition, the current front-end of the odometry is not robust
enough to work on some of the difficult sequences in EuRoc
dataset. As a result, improving the robustness of the visual
front-end is also necessary. Furthermore, tuning parameters
is critical to get VIO working, this process is tedious, and
these parameters must be manually tuned in a careful way
for different environments. An additional piece of future work
could be applying learning methods to help in implementing
VIO.

REFERENCES

[1] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visualinertial odometry using nonlinear optimization,”
The International Journal of Robotics Research, 34(3), 314334.

[2] K. Sun et al., “Robust Stereo Visual Inertial Odometry for Fast Au-
tonomous Flight,” IEEE Robotics and Automation Letters, vol. 3, no.
2, pp. 965-972, April 2018.

[3] T. Qin, P. Li and S. Shen, “VINS-Mono: A Robust and Versatile Monoc-
ular Visual-Inertial State Estimator,” IEEE Transactions on Robotics, vol.
34, no. 4, pp. 1004-1020, Aug. 2018. doi: 10.1109/TRO.2018.2853729

[4] D. Schlegel, et al. “ProSLAM: Graph SLAM from a Programmer’s
Perspective,” 2018 IEEE International Conference on Robotics and
Automation (ICRA), (2018): 1-9.

[5] T.D Barfoot, “State Estimation for Aerospace Vehicles,” Cambridge,
U.K.: Cambridge Univ. Press, 2015.

[6] C. Forster, L. Carlone, F. Dellaert and D. Scaramuzza, “On-Manifold
Preintegration for Real-Time Visual–Inertial Odometry,” in IEEE Trans-
actions on Robotics, vol. 33, no. 1, pp. 1-21, Feb. 2017.

[7] J. Sol, “Quaternion kinematics for the error-state Kalman filter,”
CoRRabs/1711.02508 (2017): n. pag.

[8] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual-inertial odometry using nonlinear optimization,”
Int. J. Robot. Research, vol. 34, no. 3, pp. 314334, Mar. 2014.

[9] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Furgale and
R. Siegwart, A Synchronized Visual-Inertial Sensor System with FPGA
Pre-Processing for Accurate Real-Time SLAM in IEEE International
Conference on Robotics and Automation (ICRA), 2014


